Home

מילים חמש מרטין לותר קינג גוניור znse band gap משולש טרי שטיח

Controllable growth of ZnO–ZnSe heterostructures for visible-light  photocatalysis - CrystEngComm (RSC Publishing) DOI:10.1039/C3CE42068J
Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis - CrystEngComm (RSC Publishing) DOI:10.1039/C3CE42068J

Simulation Evidence of Hexagonal‐to‐Tetragonal ZnSe Structure Transition: A  Monolayer Material with a Wide‐Range Tunable Direct Bandgap - Li - 2015 -  Advanced Science - Wiley Online Library
Simulation Evidence of Hexagonal‐to‐Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide‐Range Tunable Direct Bandgap - Li - 2015 - Advanced Science - Wiley Online Library

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy  Material Advances
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy Material Advances

Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by  the semi-empirical tight-binding method considering second-nearest neighbor
Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by the semi-empirical tight-binding method considering second-nearest neighbor

Band Gap Engineering of Zinc Selenide Thin Films Through Alloying with  Cadmium Telluride | ACS Applied Materials & Interfaces
Band Gap Engineering of Zinc Selenide Thin Films Through Alloying with Cadmium Telluride | ACS Applied Materials & Interfaces

Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS:  Applied Physics Letters: Vol 101, No 7
Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS: Applied Physics Letters: Vol 101, No 7

Zinc selenide - Wikipedia
Zinc selenide - Wikipedia

Table 1 from Band-gap engineering of CdS, CdSe and ZnSe first-principles  calculations | Semantic Scholar
Table 1 from Band-gap engineering of CdS, CdSe and ZnSe first-principles calculations | Semantic Scholar

A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire  solar cell by pseudomorphic layers - Journal of Materials Chemistry A (RSC  Publishing) DOI:10.1039/C4TA02971B
A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire solar cell by pseudomorphic layers - Journal of Materials Chemistry A (RSC Publishing) DOI:10.1039/C4TA02971B

The effect of Mn-doped ZnSe passivation layer on the performance of  CdS/CdSe quantum dot-sensitized solar cells
The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells

Energy band gap determination of ZnSe nanoparticles. The UV-visible... |  Download Scientific Diagram
Energy band gap determination of ZnSe nanoparticles. The UV-visible... | Download Scientific Diagram

The effect of Mn-doped ZnSe passivation layer on the performance of  CdS/CdSe quantum dot-sensitized solar cells
The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells

Crystals | Free Full-Text | Tailoring the Energy Harvesting Capacity of Zinc  Selenide Semiconductor Nanomaterial through Optical Band Gap Modeling Using  Genetically Optimized Intelligent Method
Crystals | Free Full-Text | Tailoring the Energy Harvesting Capacity of Zinc Selenide Semiconductor Nanomaterial through Optical Band Gap Modeling Using Genetically Optimized Intelligent Method

ZnSe (zinc-blende)
ZnSe (zinc-blende)

Energy band structure diagram for ZnSe/ZnO nano-heterostructures | Download  Scientific Diagram
Energy band structure diagram for ZnSe/ZnO nano-heterostructures | Download Scientific Diagram

Frontiers | Bandgap Engineering of Indium Phosphide-Based Core/Shell  Heterostructures Through Shell Composition and Thickness
Frontiers | Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness

Band gap of ZnSe nanocrystals deposited at temperature 318K at... |  Download Scientific Diagram
Band gap of ZnSe nanocrystals deposited at temperature 318K at... | Download Scientific Diagram

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy  Material Advances
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy Material Advances

Schematic diagrams showing the energy band structure of ZnO and ZnSe... |  Download Scientific Diagram
Schematic diagrams showing the energy band structure of ZnO and ZnSe... | Download Scientific Diagram

Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting  diodes - ScienceDirect
Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes - ScienceDirect

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy  Material Advances
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy Material Advances

Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption  Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films | The  Journal of Physical Chemistry C
Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films | The Journal of Physical Chemistry C

Applied Sciences | Free Full-Text | Formation of a Colloidal CdSe and ZnSe  Quantum Dots via a Gamma Radiolytic Technique
Applied Sciences | Free Full-Text | Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

ZnSe
ZnSe

PDF] Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe  quantum dots embedded in ZnSe | Semantic Scholar
PDF] Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe quantum dots embedded in ZnSe | Semantic Scholar